AI用語事典
決定木
decision tree
決定木とは、樹木のように連なったモデルにより意思決定を行う手法、もしくはグラフのこと。「決定木分析」とも呼ばれ、段階的にデータを分析する上では非常に代表的な方法のひとつである。
決定木の構造はシンプルで、大きく分けると回帰分析(相関関係にある変数を用い、将来的な値を観測する方法)に用いられる「回帰木」と、データの分類に用いられる「分類木」に分かれる。
■回帰木
例えば「映画や小説をトゥルーエンドとバッドエンド、どちらにするか決定するまでのプロセス」と考えると分かりやすい。仮にホラー映画で主人公が生き残るか否か、というテーマなら「友人の叔父の別荘地に誘われた。行くか否か」(行かなければこの時点でトゥルー)「主人公は男性か女性か」「男性なら屈強か否か」「女性なら性格は内気か強気か」などの項目を上から順に心理テストのように重ねていき、最終的な結果を「Bad」か「Survived(生きている)」に繋げる。こうすることによって、結果に対しての過程や因果関係が分かりやすくなるのが回帰木のメリットである。
■分類木
例えば日々の気温と湿度データという明確な情報があったとして、それぞれの日に「A君が寒いと感じたかどうか」が記されていたとする。例えば温度が10℃で湿度が40%なら寒い、15℃で湿度が60%なら寒くない、といった具合である。この場合「気温は10℃以上か」から始めて「10℃以上あるなら湿度は40%以上か」「湿度が40%以上なら気温は15℃以上か」という風にツリーを繋げていく方法が分類木だ。これは情報の変動を推測するための回帰木に対し、規則性や類似性を基にデータを分類する際有用とされている。
決定木はアルゴリズムの名称ではなく、ひとつの特徴である。人工知能研究においてはとりわけ教師あり学習に最適で、解釈も比較的簡単なのがメリットと言える。ただし、分類性能が比較的低い点や、過学習を引き起こしやすく汎用性が低い点など注意点もある。
AI用語解説:×AI編集部監修